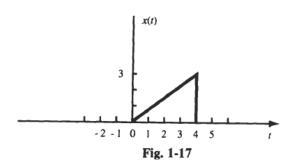
Sheet (1)

1.1. A continuous-time signal x(t) is shown in Fig. 1-17. Sketch and label each of the following signals.

(a)
$$x(t-2)$$
; (b) $x(2t)$; (c) $x(t/2)$; (d) $x(-t)$



1.3. Given the continuous-time signal specified by

$$x(t) = \begin{cases} 1 - |t| & -1 \le t \le 1 \\ 0 & \text{otherwise} \end{cases}$$

determine the resultant discrete-time sequence obtained by uniform sampling of x(t) with a sampling interval of (a) 0.25 s, (b) 0.5 s, and (c) 1.0 s.

1.4. Using the discrete-time signals $x_1[n]$ and $x_2[n]$ shown in Fig. 1-22, represent each of the following signals by a graph and by a sequence of numbers.

(a)
$$y_1[n] = x_1[n] + x_2[n]$$
; (b) $y_2[n] = 2x_1[n]$; (c) $y_3[n] = x_1[n]x_2[n]$

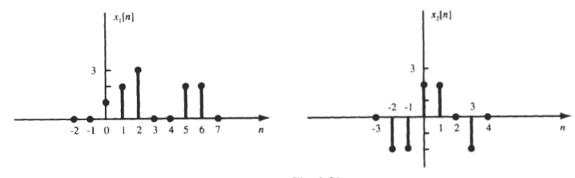
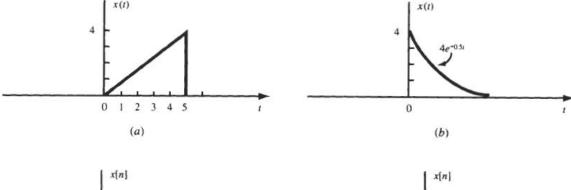
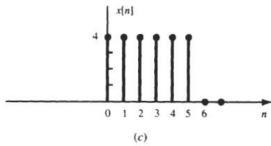


Fig. 1-22

1.5. Sketch and label the even and odd components of the signals shown in Fig. 1-24.

Sheet (1)





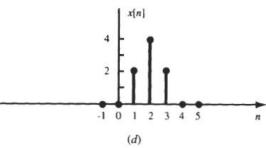


Fig. 1-24

- Find the even and odd components of $x(t) = e^{jt}$. 1.6.
- 1.10. Show that the sinusoidal signal

$$x(t) = \cos(\omega_0 t + \theta)$$

is periodic and that its fundamental period is $2\pi/\omega_0$.

1.16. Determine whether or not each of the following signals is periodic. If a signal is periodic, determine its fundamental period.

$$(a) \quad x(t) = \cos\left(t + \frac{\pi}{4}\right)$$

$$(b) \quad x(t) = \sin \frac{2\pi}{3}t$$

$$(c) \quad x(t) = \cos\frac{\pi}{3}t + \sin\frac{\pi}{4}t$$

(d)
$$x(t) = \cos t + \sin \sqrt{2} t$$

(e)
$$x(t) = \sin^2 t$$

(f)
$$x(t) = e^{i[(\pi/2)t-1]}$$

$$(g) \quad x[n] = e^{j(\pi/4)n}$$

$$(h) \quad x[n] = \cos \frac{1}{2}n$$

(c)
$$x(t) = \cos \frac{\pi}{3}t + \sin \frac{\pi}{4}t$$
 (d) $x(t) = \cos t + \sin \sqrt{2}t$
(e) $x(t) = \sin^2 t$ (f) $x(t) = e^{i[(\pi/2)t - 1]}$
(g) $x[n] = e^{j(\pi/4)n}$ (h) $x[n] = \cos \frac{1}{4}n$
(i) $x[n] = \cos \frac{\pi}{3}n + \sin \frac{\pi}{4}n$ (j) $x[n] = \cos^2 \frac{\pi}{8}n$

$$(j) \quad x[n] = \cos^2 \frac{\pi}{8} n$$

1.20. Determine whether the following signals are energy signals, power signals, or neither.

(a)
$$x(t) = e^{-at}u(t)$$
, $a > 0$

(b)
$$x(t) = A\cos(\omega_0 t + \theta)$$

$$(c) \quad x(t) = tu(t)$$

(d)
$$x[n] = (-0.5)^n u[n]$$

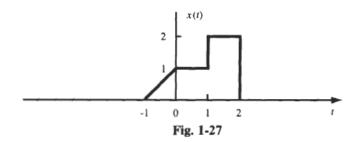
(e)
$$x[n] = u[n]$$

$$(f) \quad x[n] = 2e^{j3n}$$

Sheet (1)

1.22. A continuous-time signal x(t) is shown in Fig. 1-27. Sketch and label each of the following signals.

(a)
$$x(t)u(1-t)$$
; (b) $x(t)[u(t)-u(t-1)]$; (c) $x(t)\delta(t-\frac{3}{2})$



- **1.27.** Show that
 - (a) $t\delta(t) = 0$
 - (b) $\sin t \delta(t) = 0$
 - (c) $\cos t \delta(t-\pi) = -\delta(t-\pi)$
- **1.30.** Evaluate the following integrals:

(a)
$$\int_{-1}^{1} (3t^2 + 1)\delta(t) dt$$

(b)
$$\int_{1}^{2} (3t^2 + 1)\delta(t) dt$$

(c)
$$\int_{-\infty}^{\infty} (t^2 + \cos \pi t) \, \delta(t-1) \, dt$$

$$(d) \int_{-\infty}^{\infty} e^{-t} \delta(2t-2) dt$$

(e)
$$\int_{-\infty}^{\infty} e^{-t} \delta'(t) dt$$